

Anteater - CI/CD Gate Check Framework

This is the documentation of Anteater - CI/CD Gate Check Framework .

Anteater is an application that is run as a gate / build check within a
continous Integration / DevOps deployment scenario.

It’s main function is to block content based on regular expressions.

You can use it to protect against security risks, or automate a way of letting
developers know that their pull request contains content that is depreciated or
in some way no longer accepted by your project.

The tool can be run locally, or as a part of DevOps CI flow with systems such
as Travis CI Integration or CircleCI, Jenkins etc.

Contents

	Installation
	Operating System Requirements

	Docker

	Install Anteater

	Contribute

	User Guide
	Configuration

	Methods of Operation

	The --project argument

	The --patchset and --path arguments

	flag_list

	file_names

	file_contents

	Exceptions

	Project Exceptions

	file_contents exceptions

	file_names exceptions

	Public IP Addresses

	URLs

	binary exceptions

	Virus Total API
	API Key

	Public IP Addresses

	URLs

	Binaries

	Rate limit

	Travis CI Integration
	Set up steps

	anteater_files

	reports_dir & anteater_log

	flag_list & ignore_list

	Travis Integration

	Virus Total API KEY

	Developer Workflow

	CircleCI
	Set up steps

	anteater_files

	reports_dir & anteater_log

	flag_list & ignore_list

	CircleCI Integration

	Virus Total API KEY

	Developer Workflow

Indices and tables

	Index

	Module Index

	Search Page

Installation

Operating System Requirements

This tool is best run on a Linux distribution, it may work on Mac, but has not
been tested as yet. The recommended way is using docker, as that way it will
not interfere with your local systems package installations.

The main OS package requirements are listed below.

Note

If you only intend to use anteater as part of a Travis CI / CircleCI gate,
then you can likely bypass this chapter which is more centered on
installation for self hosted CI enviroments. See Travis CI Integration or
CircleCI for setup details.
details.

Docker

Get the latest Dockerfile (read the Dockerfile first before running!):

wget https://raw.githubusercontent.com/lukehinds/anteater/master/docker/Dockerfile

Build the Image:

docker build -t anteater .

Run an instance:

docker run -t -i anteater /bin/bash

Or to run from a job:

PROJECT="myrepo"
git diff --name-only HEAD^ > /tmp/patch
vols="-v /home/user/repos/$PROJECT"
docker run -i $vols ~/venv/bin/anteater --project $PROJECT --patchset /tmp/patch"

Install Anteater

The best method to install anteater, is via pip:

pip install anteater

Contribute

All contributions must be made as pull requests from your forked repository of
anteater.

To install from source (recommend a virtualenv for isolation / non root use):

Install requirements:

pip install -r requirements.txt

Install anteater:

python setup.py install

User Guide

Configuration

Anteaters configuration exists witin anteater.conf:

[config]
anteater_files = anteater_files/
reports_dir = %(anteater_files)s.reports/
anteater_log = %(anteater_files)s/.reports/anteater.log
flag_list = %(anteater_files)s/flag_list.yaml
ignore_list = %(anteater_files)s/ignore_list.yaml
vt_rate_type = public

	anteater_files: Main location to store anteater flag_list,
ignore_list and reports. This location is ignored by anteater when
performing scans.

	reports_dir: location for anteater to send reports

	anteater_log: anteater application logging output file.

	flag_list: Regular Expressions to flag. See RegExp Framework.

	ignore_list: Regular Expressions to overwrite / cancel flag_list.

	vt_rate_type: public or private VirusTotal API limiting.

The anteater.conf file should always be in the directory from where the
anteater command is run from. anteater will look for anteater.conf
in the present working directory.

Methods of Operation

Anteater uses a simple argument system in the standard POSIX format.

The main usage parameters are --project and either ---path or
--patchset.

Optional parameters are --binaries which is the binary check system. When
this argument is passed, all binaries / blobs will result in a VirusTotal scan
- unless a sha256 checksum of the binary is listed in one of the exeception
files (ignore_list or a project_exceptions file. --ips peforms a
scan of IP addresses, and --urls for any URL’s found within file contents.

Refer to binary exceptions for more details on the binary blocking feature of
anteater.

The --project argument

Anteater always requires a project name passed with the --project argument.
This should be the same as the name as your repository. So for example, if your
git repository and its root folder are named ‘acme’, then you
pass --project acme.

Having a project parameter allows for a scenario of multiple projects (for
example when using gerrit).

The --project parameter maps to several areas:

	Reports naming convention (for example contents_<project>.log)

	dealing with a relative path (we strip out the full path, to allow people to
enter filenames with a path relative to the repository). This is useful for
when running locally (where every user will have their own unique $HOME).

	project exceptions:

project_exceptions:
 - myrepo: anteater_files/myrepo.yaml

Note

See Exceptions for more details.

The --patchset and --path arguments

Anteater can be run with two methods, --patchset or --path.

When --patchset is passed as an argument, it is expected that a text file be
provided that consists of a list of files, using a relative or full path.
Anteater will then iterate scans over each file, with the files seperated by
a new line. For example:

% cat /tmp/patchset
/path/to/repos/myrepo/fileone.sh
/path/to/repos/myrepo/filetwo.sh
/path/to/repos/myrepo/filethree.txt

The patchset is typically generated by another system, with git being a good
example and allowing a complete pull request to be iterated over:

git diff --name-only HEAD^ > /tmp/patchset

This would then be called with:

anteater --project myrepo --patchset /tmp/patchset

When --path is provided, the argument should be a single relative or full
path to your repositories folder. Anteater will then perform a recursive walk
through all files in the respository folder. For example:

anteater --project myrepo --path /path/to/repos/myrepo

Having these two methods allows anteater to scan individual pull requests /
patch sets or perform a complete audit on existing files.

RegExp Framework

The RegExp Framework is set of a YAML formatted files which are declared in
anteater.conf under the directives flag_list and ignore_list, as
well as project_exceptions embedded within ignore_list.

There is a simple hierarchy with these files, with ignore_list and the
contents within project_exceptions “stacking” on top.

All RegExp files should be stored in the set location of anteater_files
that is declared in anteater.conf - this is important, as anteater_files
is ignored by anteater during all scanning operations, thereby stopping anteater
falsely flagging its own strings set within flag_list.

flag_list

flag_list is a complete list of all regular expressions, that if matched
within any file content or binary / file name, will cause anteater to exit with
a sys code of 1, thereby causing a build failure within a CI system (such as
jenkins / Travis CI).

flag_list should be considered a list of strings or object namings that you
do not want anyone to merge into a repository, a blacklist essentially. This
could include security objects such as private keys, binaries or depreciated
functions, modules, libaries. Basically anything that can be matched using
standard regular expression syntax.

Within flag_list are several parameters set within YAML list formats.

file_names

file_names is a list of full file names to flag. For example, the following
would flag someone’s shell history if included in a pull request / patch:

file_audits:
 file_names:
 - (irb|plsq|mysql|bash|zsh)_history

So if a user then accidentally checks in a zsh_history then anteater will
flag this, the build will fail and prevent an oversight from happening and the
file being merged into main branches.

file_contents

file_contents is a list of regular expression strings that will be searched
for within any file that is not a binary / blob - this could be text files,
documentation, shell scripts, source code etc.

The structure of the file is as follows:

file_audits:
 file_contents:
 unique_name:
 regex: <Regular Expression to Match>
 desc: <Line of text to describe the rationale for flagging the string>

The following would be examples for ensuring no insecure cryptos are used and
a depreciated function is also flagged:

file_contents:
 md245:
 regex: md[245]
 desc: "Insecure hashing algorithm"

 depreciated_function:
 regex: depreciated_function\(.*\)
 desc: This function was depreciated in release X, use Y function.

So the above would match and flag the following lines:

hashlib.md5(password)

dothis = thing.depreciated_function(some_value):

Exceptions

Exceptions are essentially a regular expression that provides a waiver to
strings that are flagged as false postives.

Exceptions can be made in two locations ignore_list or project_exceptions
set within ignore_list and allows you to overule a string set within the
flag_list file with a more unique regular expression.

There are main three sections within ignore_list.yaml and
project_exceptions

	file_contents - ignore matching regex if matched in a certain file.

	file_names - ignore matching regex when it matches a file name.

	binaries - allow binaries, when they have a matching sha256 checksum set.

Project Exceptions

If you’re a single project, then you can place all of the above three sections
into ignore_list.yaml. If you have to manage multiple projects, then use
ignore_list.yaml as a global master list, and use a project_exceptions
entry for each individual project. For example, within your ignore_list.yaml
you can declare each projects exeception list as follows:

project_exceptions:
 - acme: anteater_files/acme.yaml
 - bravo anteater_files/bravo.yaml
 - charlie anteater_files/charlie.yaml

file_contents exceptions

file_contents exceptions are used to cancel out a flag_list entry by
using a regular expression that matches a unique string that has been
incorrectly flagged and is a false positive.

Let’s say we wish to have some control over git repositories that can be cloned
in shell scripts present in out repository and used to automate our builds.

First we make an entry in the flag_list around git clone:

file_contents:
 clone:
 regex: git.*clone
 desc: "Clone blocked as using an non approved external source"

The above would flag any instance of a clone, for example:

git clone http://github.com/no_longer_around/some_unmaintained_repo.git

Now let’s assume we want to allow all clones from a specific github org called
‘acme’ which we trust, but no other github repositories.

We could do this by using the following Exception:

file_contents:
 - git clone https:\/\/github\.com\\acme\\.+

This would then allow the following strings:

git clone https://github.com/acme/repository
git clone https://github.com/acme/another_repository

Let’s look at an example again using the md5 flag:

file_contents:
 md245:
 regex: md[245]
 desc: "Insecure hashing algorithm"

The above file_contents expression would incorrectly match the following
string:

mystring = int(md500) * 4

In this case md500` is incorrectly matched against ``md5.

We can cancel out this false postive with a regular expression unique to the
incorrectly flagged false positive:

file_contents:
 - mystring.=.int\(md500\).*

Note

You can test strings out on an regex site such as https://regex101.com

file_names exceptions

As with file_contents, file_names incorrectly flagged as false postives may
also be removed using a regular expression.

Public IP Addresses

If –ips is passed as arguments, anteater will perform a scan for
public / external IP Addresses. Once an address is found, the IP is sent to
the Virus Total API and if the IP Address has past assocations with malicous
or malware hosting domains, a failure is registered and a report is provided.

An example report can be seen here [https://www.virustotal.com/#/ip-address/90.156.201.27].

URLs

If --urls is passed as arguments, anteater will perform a scan for URL’s.
If an URL is found, the URL is sent to the Virus Total API which then
compares the URL to a large list of URL blacklisting services.

An example report can be seen here [https://www.virustotal.com/#/url/fb69ecad84eb86b1afddcca17aec38daea196e7c883b22ff88a7c39fd8fbdf1a/detection].

binary exceptions

If the --binaries argument is passed to anteater, anteater blocks (CI build
failure) all binary files unless a sha256 checksum of the file is entered as an
exeception. If no checksum is present, the binary (hash) is also sent to
the VirusTotal API.

This is done using the relative path from the root of the respository.

For example:

media/images/weather-storm.png:
 - 48f38bed00f002f22f1e61979ba258bf9006a2c4937dde152311b77fce6a3c1c
media/images/stop_light.png:
 - 5a1101e8b1796f6b40641b90643d83516e72b5b54b1fd289cf233745ec534ec9

Examples of files can be found here_.
.. _here: https://github.com/anteater/tree/master/examples

Virus Total API

API Key

In order to use the VirusTotal API, you will first require an API key. These are free to get
and can be obtained by signing up to the service here [https://www.virustotal.com/#/join-us].

Once you have your key, it needs to be set as an environment variable.

If you’re using CI, then see refer to the relevant CI document section in
these docs for examples of how to achieve this.

If either –ips, --urls or --bincheck are called as arguments (in
any combination including all three at once), then the VirusTotal API will be
queried for information on the following:

Public IP Addresses

If –ips is passed as arguments, anteater will perform a scan for
public / external IP Addresses. Once an address is found, the IP is sent to
the Virus Total API and if the IP Address has past assocations with malicous
or malware hosting domains, a failure is registered and a report is provided.

An example report can be seen here [https://www.virustotal.com/#/ip-address/90.156.201.27].

If you wish to whitelist an IP address, make an entry into your ignore_list or project
specific ignore_list:

	ip_ignore:

	
	‘173.217.16.206’

	‘92.47.16.221’

URLs

If --urls is passed as arguments, anteater will perform a scan for URL’s.
If an URL is found, the URL is sent to the Virus Total API which then
compares the URL to a large list of URL blacklisting services.

An example report can be seen here [https://www.virustotal.com/#/url/fb69ecad84eb86b1afddcca17aec38daea196e7c883b22ff88a7c39fd8fbdf1a/detection].

If you wish to whitelist an IP address, make an entry into your ignore_list or project
specific ignore_list:

	url_ignore:

	
	‘http://www.apache.org’

	‘https://github.com’

Binaries

If --bincheck is passed as arguments, anteater will send a hash of the
binary to the Virus Total API which then compares the binary to an aggregation
of Virus Scanner results. If no existing report is available, anteater will
send the complete binary file to Virus Total for a new scan.

If you wish to whitelist an binary, make an entry into your ignore_list or project
specific ignore_list:

	binaries:

	
	path/to/example.png:

	
	609feaed93afbea14c6b10c6effc986f39d1deb0a372ac088129bb22bbca8834

	Note: The sha256 checksum showed above, will be outputed in anteaters logs when it finds a binary.

Rate limit

Use of the public Virus Total API requires a rate limit of no more than three
requests per minute, unless you have use of a private API account.

Public or Private can be set within the anteater.conf file, and anteater
will then use the appropriate rate limit:

vt_rate_type = public

The values are public for the public API, and private for the private
API.

Redis is requried for rate litmiting as means to track global rate requests.

All that is required for the Redis set up, is the installation of Redis and
running redis with its default values.

The Dockerfile will deploy redis for you. Refer to `installation`_ for more
details.

Travis CI Integration

Set up steps

First create an `anteater.conf in the root directory of your repository:

[config]
anteater_files = anteater_files/
reports_dir = %(anteater_files)s.reports/
anteater_log = %(anteater_files)s/.reports/anteater.log
flag_list = %(anteater_files)s/flag_list.yaml
ignore_list = %(anteater_files)s/ignore_list.yaml

anteater_files

anteater_files is a location which anteater wil not scan.

The rationale about hiding this folder from anteater, is for the simple fact
anteater will report on the strings it uses itself as a guide for what to
search for.

reports_dir & anteater_log

You can leave these as is, its a logging location used for when running the tool
locally.

flag_list & ignore_list

flag_list.yaml is where all regular expressions are set, that if matched
will fail the build, thereby marking a failure on the pull request page.

Some examples can be found here [https://github.com/anteater/blob/master/examples/].

For information on flag_list, please consult the User Guide

Travis Integration

All that is required now is to make the following entries to your yaml file:

language: python

python:
 - "2.7"

install:
 - pip install anteater

before_script:
 - git diff --name-only HEAD^ > ./patch
script:
 - anteater --project antest --patchset ./patch

Note

Should you be using another language other then python (for example ruby), you
can use matrix:include

matrix:
 include:
 - language: python
 python:
 - "2.7"
 - "3.6"

 install:
 - pip install anteater

 before_script:
 - git diff --name-only HEAD^ > ./patch

 script:
 - anteater --project antest --patchset ./patch

 - language: ruby
 # your project travis elements go here.

An example .travis.yml can be found here [https://github.com/anteater/blob/master/examples/.travis.yml].

Virus Total API KEY

Should you wish to use any of the Virus Total functionailty such as URL
scanning, then please set your Virus Total Key as the environment variable
VT_KEY in the “Environment Variables” section of your Travis CI job, see
here [https://docs.travis-ci.com/user/environment-variables#Defining-Variables-in-Repository-Settings].
for complete details.

Developer Workflow

	Contributor forks , creates a branch

git checkout -b mypullrequest

	Contributor commits and makes pull request

git commit -m "My Pull Request"
git push origin mypullrequest

	A pull request is then made on the Contributors github page.

	Travis CI runs anteater checks, checks fail.

	Contributor addresses the failure.

git commit -va -m "Correcting for anteater failures"

	Travis CI runs anteater again, and marks build as Passed.

	Main developer see’s test has passed, and merges Contributors pull request.

CircleCI

Set up steps

First create an `anteater.conf in the root directory of your repository:

[config]
anteater_files = anteater_files/
reports_dir = %(anteater_files)s.reports/
anteater_log = %(anteater_files)s/.reports/anteater.log
flag_list = %(anteater_files)s/flag_list.yaml
ignore_list = %(anteater_files)s/ignore_list.yaml

anteater_files

anteater_files is a location which anteater wil not scan.

The rationale about hiding this folder from anteater, is for the simple fact
anteater will report on the strings it uses itself as a guide for what to
search for.

reports_dir & anteater_log

You can leave these as is, its a logging location used for when running the tool
locally.

flag_list & ignore_list

flag_list.yaml is where regular expressions are set, that if matched will
fail the build, thereby marking a failure on the github pull request page.

More examples can be found here [https://github.com/anteater/blob/master/examples/].

For information on flag_list, please consult the User Guide

CircleCI Integration

All that is required now is to make the following entries to your CircleCI
configuration file .circleci/config.yml:

Python CircleCI 2.0 configuration file
#
Check https://circleci.com/docs/2.0/language-python/ for more details
#
version: 2
jobs:
 build:
 docker:
 # specify the version you desire here
 # use `-browsers` prefix for selenium tests, e.g. `3.6.1-browsers`
 - image: circleci/python:2.7

 # Specify service dependencies here if necessary
 # CircleCI maintains a library of pre-built images
 # documented at https://circleci.com/docs/2.0/circleci-images/
 # - image: circleci/postgres:9.4

 working_directory: ~/repo

 steps:
 - checkout

 # Download and cache dependencies
 - restore_cache:
 keys:
 - v1-dependencies-{{ checksum "requirements.txt" }}
 # fallback to using the latest cache if no exact match is found
 - v1-dependencies-

 - run:
 name: install dependencies
 command: |
 virtualenv ~/venv
 . ~/venv/bin/activate
 pip install -r requirements.txt
 git diff --name-only HEAD^ > ~/repo/patchset

 - save_cache:
 paths:
 - ./venv
 key: v1-dependencies-{{ checksum "requirements.txt" }}

 # run tests!
 - run:
 name: run tests
 command: |
 . ~/venv/bin/activate
 anteater --project ci-circle --patchset ~/repo/patchset

 - store_artifacts:
 path: test-reports
 destination: test-reports

An example config.yml can be found here [https://github.com/anteater/blob/master/examples/config.yml].

Virus Total API KEY

Should you wish to use any of the Virus Total functionailty such as URL
scanning, then please set your Virus Total Key as the environment variable
VT_KEY in the “Environment Variables” section of your Circle CI app, see
here [https://circleci.com/docs/2.0/env-vars/#adding-environment-variables-in-the-app].
for complete details.

Developer Workflow

	Contributor forks , creates a branch

git checkout -b mypullrequest

	Contributor commits and makes pull request

git commit -m "My Pull Request"
git push origin mypullrequest

	A pull request is then made on the Contributors github page.

	Travis CI runs anteater checks, checks fail.

	Contributor addresses the failure.

git commit -va -m "Correcting for anteater failures"

	Travis CI runs anteater again, and marks build as Passed.

	Main developer see’s test has passed, and merges Contributors pull request.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 anteater	

 	
 	
 anteater.src	

Index

 A

A

 	
 	anteater (module)

 	
 	anteater.src (module)

 Luke Hinds: https://github.com/lukehinds
Julien: https://github.com/databill
Trevor Bramwell: https://github.com/bramwelt
Ross Brattain: https://github.com/rbbratta
Fatih Degirmenci: https://github.com/fdegir
Xudan: https://github.com/xudan16

License

anteater.src package

Submodules

anteater.src.get_lists module

anteater.src.patch_scan module

anteater.src.project_scan module

anteater.src.virus_total module

Module contents

anteater package

Subpackages

	anteater.src package
	Submodules

	anteater.src.get_lists module

	anteater.src.patch_scan module

	anteater.src.project_scan module

	anteater.src.virus_total module

	Module contents

Submodules

anteater.main module

Module contents

anteater

	anteater package
	Subpackages
	anteater.src package
	Submodules

	anteater.src.get_lists module

	anteater.src.patch_scan module

	anteater.src.project_scan module

	anteater.src.virus_total module

	Module contents

	Submodules

	anteater.main module

	Module contents

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Anteater - CI/CD Gate Check Framework

 		
 Installation

 		
 Operating System Requirements

 		
 Docker

 		
 Install Anteater

 		
 Contribute

 		
 User Guide

 		
 Configuration

 		
 Methods of Operation

 		
 The –project argument

 		
 The –patchset and –path arguments

 		
 RegExp Framework

 		
 flag_list

 		
 file_names

 		
 file_contents

 		
 Exceptions

 		
 Project Exceptions

 		
 file_contents exceptions

 		
 file_names exceptions

 		
 Public IP Addresses

 		
 URLs

 		
 binary exceptions

 		
 Virus Total API

 		
 API Key

 		
 Public IP Addresses

 		
 URLs

 		
 Binaries

 		
 Rate limit

 		
 Travis CI Integration

 		
 Set up steps

 		
 anteater_files

 		
 reports_dir & anteater_log

 		
 flag_list & ignore_list

 		
 Travis Integration

 		
 Virus Total API KEY

 		
 Developer Workflow

 		
 CircleCI

 		
 Set up steps

 		
 anteater_files

 		
 reports_dir & anteater_log

 		
 flag_list & ignore_list

 		
 CircleCI Integration

 		
 Virus Total API KEY

 		
 Developer Workflow

_static/up-pressed.png

_static/up.png

_static/plus.png

